Hierarchically Macro-Mesoporous Pt/γ-Al2O3 Composite Microspheres for Efficient Formaldehyde Oxidation at Room Temperature
نویسندگان
چکیده
Room temperature catalytic oxidation by noble metals is considered to be the most promising strategy for the removal of HCHO, which is one of the major indoor air pollutants. Hierarchically macro-mesoporous structured Pt/γ-Al2O3 hollow spheres with open and accessible pores were synthesized and used for catalytic oxidative decomposition of HCHO at room temperature. The prepared composite hollow spheres showed higher catalytic activity than the conventional nanoparticle supports, which is mainly due to their hierarchical macro-mesoporous structure facilitating diffusion of reactants and products, and the high dispersion of accessible catalytic Pt nanoparticles. This work may contribute to the development of hierarchically structured materials and high-performance catalysts for indoor air purification and related catalytic processes.
منابع مشابه
TiCl2/nano-γ-Al2O3 as an efficient catalyst for synthesis of substituted pyrroles under solvent-free conditions at room temperature
TiCl2/nano-γ-Al2O3 as a new heterogeneous Lewis acid catalyst was synthesized and characterized by FE-SEM, XRD, FT-IR, EDS, XRF, BET and TGA. N-substituted pyrroles have been synthesized via Paal–Knorr reaction in the presence of TiCl2/nano-γ-Al2O3 at room temperature under solvent-free conditions.
متن کاملTiCl2/nano-γ-Al2O3 as an efficient catalyst for synthesis of substituted pyrroles under solvent-free conditions at room temperature
TiCl2/nano-γ-Al2O3 as a new heterogeneous Lewis acid catalyst was synthesized and characterized by FE-SEM, XRD, FT-IR, EDS, XRF, BET and TGA. N-substituted pyrroles have been synthesized via Paal–Knorr reaction in the presence of TiCl2/nano-γ-Al2O3 at room temperature under solvent-free conditions.
متن کاملElimination of formaldehyde over Cu-Al2O3 catalyst at room temperature.
Catalytic elimination of formaldehyde (HCHO) was investigated over Cu-Al2O3 catalyst at room temperature. The results indicated that no oxidation of HCHO into CO2 occurs at room temperature, but the adsorption of HCHO occurs on the catalyst surface. With the increase of gas hourly space velocity (GHSV) and inlet HCHO concentration, the time to reach saturation was shortened proportionally. The ...
متن کاملElectrocatalytic oxidation of formaldehyde onto Pt nanoparticles modified poly (m-toluidine)/Triton X-100 film
In this work, spherical Pt nanometer-scale particles supported on the poly (m-toluidine)/Triton X-100 film modified carbon nanotube paste electrode (Pt/PMT (TX-100)/MCNTPE) was used as a potent catalyst for electrooxidation of formaldehyde (HCHO) in both 0.5 M H2SO4 and 0.1 M NaOH solutions. The obtained results showed that utilization of TX-100 as an additive during the electropolymerization p...
متن کاملRapid H2O2-promoted oxidation of anazolene sodium over the [BMIM]PF=/Pt/γ-Al2O3 nanocatalyst
Highly meso-porous Pt contained γ-Al2O3 nanostructure was prepared by a combined sol gel-pyrolysis method in the presence of polyvinylpyrrolidone and Pluronic p123 as surfactant. The surface of the prepared nanostructure was decorated with 1-Butyl-3-methylimidazolium hexafluorophosphate ([BMM]PF6) ionic liquid to enhance the sorption capacity and prevent the poisoning of the catalytic active si...
متن کامل